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Assignment 5—solutions

Exercise 1

Let B be a standard Brownian motion. For each n ≥ 1, let B(n) be the (random) function such that B
(n)
t = Bt for all

t ∈ 2−nN0 and such that B(n) is linear on the intervals [i2−n, (i + 1)2−n] for all i ≥ 0 (these processes appeared in the
dyadic construction of Brownian motion). Fix ε > 0 and let f : [0, 1] −→ R be continuous with f(0) = 0.

1) Show that P
[

supt∈[0,1] |Bt − B
(n)
t | ≤ ε/3

]
−→ 1, as n → ∞.

2) Prove that for all n ∈ N, B(n) and B − B(n) are P-independent.

3) Using uniform continuity of f , establish that P
[

supt∈[0,1] |Bt − f(t)| ≤ ε
]

> 0.

1) Since B is continuous, it is uniformly continuous on [0, 1] and thus

sup
[0,1]

|B − B(n)| ≤ sup
s,t∈[0,1] : |s−t|≤2−n

|Bs − Bt| −→ 0, as n → ∞.

Since almost sure convergence implies convergence in probability, the result follows.

2) Since B(n) and B − B(n) are both continuous jointly centred Gaussian processes, it suffices to show
that

C(s, t) := EP[
B(n)

s (Bt − B
(n)
t )

]
= 0, for all s, t ≥ 0.

Let us write s = 2−n(k + α) and t = 2−n(l + β) for k, l ≥ 0 and α, β ∈ [0, 1). Then

B(n)
s = (1 − α)B2−nk + αB2−n(k+1), and Bt − B

(n)
t = (1 − β)(B2−n(l+β) − B2−nl) + β(B2−n(l+β) − B2−n(l+1)).

So we can compute the covariances as follows

C(s, t) =
{

(1 − α)(2−nk − 2−nk) + α(2−n(k + 1) − 2−n(k + 1)) = 0, k < l,

(1 − β)(2−n(l + β) − 2−nl) + β(2−n(l + β) − 2−n(l + 1)) = 0, k ≥ l,

as required. One can prove this result alternatively by noting that the B(n) appear in the construction
of Brownian motion (at the n’th iteration) and from there it is immediate that B − B(n) is independent
of B(n).

3) Let f (n) : [0, 1] → R be the function which agrees with f on [0, 1] ∩ 2−nN0 and is linear on the intervals
[i2−n, (i + 1)2−n] for all 0 ≤ i ≤ 2n − 1. By the triangle inequality

sup
[0,1]

|B − f | ≤ sup
[0,1]

|B − B(n)| + sup
[0,1]

|f − f (n)| + sup
[0,1]

|f (n) − B(n)|

≤ sup
[0,1]

|B − B(n)| + sup
s,t∈[0,1] : |s−t|≤2−n

|fs − ft| + sup
i=1,...,2n

|fi2−n − Bi2−n |.

By uniform continuity of f , we can take n sufficiently large such that the second term above is ≤ ϵ/3.
Thus

P
[

sup
t∈[0,1]

|Bt − f(t)| ≤ ε

]
≥ P

[
sup

t∈[0,1]
|Bt − B

(n)
t | ≤ ε/3, sup

i∈{1,...,2n}
|fi2−n − Bi2−n | ≤ ε/3

]
= P

[
sup

t∈[0,1]
|Bt − B

(n)
t | ≤ ε/3

]
P

[
sup

i∈{1,...,2n}
|fi2−n − Bi2−n | ≤ ε/3

]
,
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where we used the independence from 2). The first term of the product tends to 1 as n → ∞ by 1) and
the second term is > 0 since (Bi2−n : i ∈ {1, . . . , 2n}) is a non-degenerate Gaussian vector. This completes
the proof.

Exercise 2

Let B be a standard Brownian motion. We will now show that EP[
supt∈[0,1] |Bt|p

]
< +∞ for all p < +∞

1) Show that

sup
t∈[0,1]

|Bt| ≤
+∞∑
n=1

sup
i∈{0,...,2n−1}

∣∣B(i+1)2−n − Bi2−n

∣∣.
2) For p ≥ 1, deduce that

EP
[

sup
t∈[0,1]

|Bt|p
]1/p

≤
+∞∑
n=1

( 2n−1∑
i=0

EP[
|B(i+1)2−n − Bi2−n |p

])1/p

.

3) Hence deduce that EP[
supt∈[0,1] |Bt|p

]
< +∞ for all p < +∞ sufficiently large and therefore actually for all

p ∈ (0, ∞).

1) Any t ∈ [0, 1) ∩ 2−mN can be written as t = b12−1 + · · · + bm2−m for some bi ∈ {0, 1} and therefore

|Bt| = |Bt − B0| ≤
m∑

k=1
|Bb12−1+···+bk2−k − Bb12−1+···+bk−12−(k−1) | ≤

∑
k≥1

sup
i∈{0,...,2k−1}

|B(i+1)2−k − Bi2−k |.

Since ∪m∈N[0, 1) ∩ 2−mN is dense in [0, 1], the statement follows.

2) By Minkowski’s inequality and by bounding the supremum by a sum, we get

EP
[

sup
t∈[0,1]

|Bt|p
]1/p

≤
∑

n∈N⋆

(
EP

[
sup

i∈{0,...,2n−1}
|B(i+1)2−n − Bi2−n |p

])1/p

≤
∑

n∈N⋆

( 2n−1∑
i=0

EP[
|B(i+1)2−n − Bi2−n |p

])1/p

.

Let N ∼ N(0, 1), then since B(i+1)2−n −Bi2−n and 2−n/2N have the same law, we get EP[|B(i+1)2−n −Bi2−n |p] =
2−np/2EP[|N |p] and hence

EP
[

sup
t∈[0,1]

|Bt|p
]1/p

≤ EP[|N |p]1/p
∑

n∈N⋆

2n(1/p−1/2) < +∞,

for p > 2. Since for 0 < p′ < p, supt∈[0,1] |Bt|p
′ ≤ 1 + supt∈[0,1] |Bt|p, the general case follows immediately.

Exercise 3

For a compact set K ⊂ R, we define its lower Minkowski content of dimension d > 0 to be

md(K) = lim inf
n→∞

1
nd

∑
i∈Z

1{K∩[i/n,(i+1)/n] ̸=∅} ∈ [0, ∞].

Let B be a standard Brownian motion and define K := {t ∈ [0, 1] : Bt = 0}. The goal of this question is to show that
for d > 1/2, md(K) = 0, P–a.s. (which means that the lower Minkowski dimension of K is ≤ 1/2, P–a.s.).
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1) Show that md(K) is measurable.

2) Prove that

EP[md(K)] ≤ lim inf
n→∞

1
nd

n−1∑
i=0

P
[
K ∩ [i/n, (i + 1)/n] ̸= ∅

]
≤ lim inf

n→∞

1
nd

n−1∑
i=0

P
[

sup
t∈[0,1/n]

∣∣Bi/n+t − Bi/n

∣∣ ≥ |Bi/n|
]
.

3) Using the scaling and the weak Markov property of Brownian motion, show that

P
[

sup
t∈[0,1/n]

∣∣Bi/n+t − Bi/n

∣∣ ≥ |Bi/n|
]

= P
[

sup
t∈[0,1]

|Bt| ≥
√

i|N |
]
,

where N ∼ N(0, 1) is independent of B.

4) Using the previous exercise and 3) above, show that for all α ∈ (0, 1/2) there exists c′
α > 0 such that whenever

i ∈ N⋆, we have

P
[

sup
t∈[0,1/n]

∣∣Bi/n+t − Bi/n

∣∣ ≥ |Bi/n|
]

≤ c′
α/iα.

1. Deduce that EP[md(K)] = 0 and hence md(K) = 0, P–a.s. for d > 1/2.

1) It suffices to observe that inft∈[i/n,(i+1)/n] |Bt| = inft∈[i/n,(i+1)/n]∩Q |Bt| is measurable, and hence so is

1{K∩[i/n,(i+1)/n]̸=∅} = 1{inft∈[i/n,(i+1)/n] |Bt|=0} .

The result follows since linear combinations, infima and limits preserve measurability.

2) By Fatou’s lemma and the linearity of the expectation, we obtain the first inequality. For the second
inequality, we observe that K ∩ [i/n, (i + 1)/n] ̸= ∅ if and only if Bt = 0 for some t ∈ [i/n, (i + 1)/n] and so
necessarily supt∈[0,1/n] |Bi/n+t − Bi/n| ≥ |Bi/n| implying

P
[
K ∩ [i/n, (i + 1)/n] ̸= ∅

]
≤ P

[
sup

t∈[0,1/n]
|Bi/n+t − Bi/n| ≥ |Bi/n|

]
.

3) We first observe that

P
[

sup
t∈[0,1/n]

|Bi/n+t − Bi/n| ≥ |Bi/n|
]

= P
[

sup
t∈[0,1]

|
√

nB(i+t)/n −
√

nBi/n| ≥ |
√

nBi/n|
]
.

Since (
√

nBt/n : t ≥ 0) and B have the same law, we deduce

P
[

sup
t∈[0,1]

|
√

nB(i+t)/n −
√

nBi/n| ≥ |
√

nBi/n|
]

= P
[

sup
t∈[0,1]

|Bi+t − Bi| ≥ |Bi|
]
.

By the weak Markov property, Bi+· − Bi and Bi are P-independent, Bi+· − Bi and B have the same law,
and

√
iN and Bi have the same law. All of this implies that

P
[

sup
t∈[0,1]

|Bi+t − Bi| ≥ |Bi|
]

= P
[

sup
t∈[0,1]

|B| ≥
√

i|N |
]
.

4) By a union bound, we obtain

P
[

sup
t∈[0,1]

|Bt| ≥
√

i|N |
]

≤ P
[
|N | ≤ i−α

]
+ P

[
sup

t∈[0,1]
|Bt| ≥ i1/2−α

]
≤ 2(2π)−1/2i−α + ip(α−1/2)EP

[
sup

t∈[0,1]
|Bt|p

]
,
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whenever p > 0. By taking p > 0 such that p(1/2 − α) > α, we obtain the claim making use the previous
exercise.

5) By 2) and 4), for α ∈ (0, 1/2) and d > 1/2

EP[md(K)] ≤ c′
α lim inf

n→∞

1
nd

(
1 +

n−1∑
i=1

i−α

)
≤ c′′

α · lim inf
n→∞

n1−α−d,

for some constant c′′
α > 0. By choosing α sufficiently close to 1/2, we get 1 − α − d < 0 which completes

the proof.

Exercise 4

A function f : D ⊆ R → R is called locally Hölder continuous of order α at x ∈ D if there exists δ > 0 and C > 0
such that |f(x) − f(y)| ≤ C|x − y|α for all y ∈ D with |x − y| ≤ δ. A function f : D ⊆ R → R is called locally Hölder
continuous of order α, if it is locally Hölder continuous of order α at each x ∈ D.

1) Let Z ∼ N(0, 1). Prove that P[|Z| ≤ ε] ≤ ε for any ε ≥ 0.

2) Prove that for any α > 1
2 , P–almost all Brownian paths are nowhere on [0, 1] locally Hölder-continuous of order

α.

Hint: take any M ∈ N satisfying M(α− 1
2 ) > 1 and show that the set {W.(ω) is locally α-Hölder at some s ∈ [0, 1]}

is contained in the set

B :=
⋃

C∈N

⋃
m∈N

+∞⋂
n=m

n−M⋃
k=0

M⋂
j=1

{∣∣W k+j
n

(ω) − W k+j−1
n

(ω)
∣∣ ≤ C

nα

}
.

3) The Kolmogorov–Čentsov theorem states that an R-valued process X on [0, T ] satisfying

EP[
|Xt − Xs|γ

]
≤ C|t − s|1+β , (s, t) ∈ [0, T ]2,

where γ, β, and C are positive, has a P-modification which is locally Hölder-continuous of order α for all α < β/γ.
Use this to deduce that Brownian motion has for every α < 1/2 a version which is locally Hölder-continuous of
order α.

1) The density f(x) = 1√
2π

e−x2/2 of Z is bounded by 1√
2π

≤ 1
2 . So

P[|Z| ≤ ε] = P[−ε ≤ Z ≤ ε] =
∫ ε

−ε

f(x)dx ≤ 1
22ε = ε.

2) Take any α > 1
2 and let M ∈ N satisfying M(α − 1

2 ) > 1. If W·(ω) is locally Hölder-continuous of order
α at the point s ∈ [0, 1], there exists a constant Ch so that |Wt(ω) − Ws(ω)| ≤ Ch|t − s|α for t near s. Then
|W k

n
(ω) − W k−1

n
(ω)| ≤ const · n−α for all large enough n, for k

n near s and M successive indices k. The set
{W·(ω) is locally α-Hölder at some s ∈ [0, 1]} is therefore contained in

B :=
⋃

C∈N

⋃
m∈N

⋂
n≥m

⋃
k∈{0,...,n−M}

M⋂
j=1

{
|W k+j

n
(ω) − W k+j−1

n
(ω)| ≤ C

nα

}
.

We show that this is a P–null set. As the above Brownian increments are i.i.d. and distributed as
N(0, 1

n ), we have, with Z ∼ N(0, 1), since P[|Z| ≤ ε] ≤ ε for any ε ≥ 0 (see 1)), that

P

[
M⋂

j=1

{
|W k+j

n
(ω) − W k+j−1

n
(ω)| ≤ C

1
nα

}]
=

(
P

[
|Z| ≤ C

nα−1/2

])M

≤ CM n−M(α− 1
2 ). (0.1)

4



Now, we have for any n ≥ m

Dm : =
⋂

n≥m

n−M⋃
k=0

M⋂
j=1

{
|W k+j

n
(ω) − W k+j−1

n
(ω)| ≤ C

nα

}
⊆

n−M⋃
k=0

M⋂
j=1

{
|W k+j

n
(ω) − W k+j−1

n
(ω)| ≤ C

nα

}
,

and therefore, due to (0.1), since M(α − 1
2 ) > 1, we get

P[Dm] ≤ lim sup
n→∞

P

[
n−M⋃
k=0

M⋂
j=1

{
|W k+j

n
(ω) − W k+j−1

n
(ω)| ≤ C

nα

}]
≤ lim sup

n→∞

{
nCM n−M(α− 1

2 )} = 0.

Therefore, being a countable union of P–null sets, B is such that P[B] = 0.

3) Let Yσ ∼ N (0, σ2) for any σ ≥ 0. We note that EP[Y m
σ ] = Cmσm, where Cm = EP[Y m

1 ]. Thus

EP[
|Wt − Ws|2n

]
= C2n|t − s|n, for all n ∈ N.

Writing γn := 2n and βn := n − 1 yields that

EP[
|Wt − Ws|γn

]
= C2n|t − s|1+βn , for all n ∈ N.

Now, fix α < 1
2 . As βn

γn
< 1

2 for any n ∈ N and βn

γn
converges to 1

2 , we find big enough N such that α < βN

γN
.

Thus, we get the result applying the Kolmogorov–Čentsov theorem
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